Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cheminform ; 14(1): 4, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109921

RESUMO

In the era of data science, data-driven algorithms have emerged as powerful platforms that can consolidate bioisosteric rules for preferential modifications on small molecules with a common molecular scaffold. Here we present complementary data-driven algorithms to minimize the search in chemical space for phenylthiazole-containing molecules that bind the RNA hairpin within the ribosomal peptidyl transferase center (PTC) of Mycobacterium tuberculosis. Our results indicate visual, geometrical, and chemical features that enhance the binding to the targeted RNA. Functional validation was conducted after synthesizing 10 small molecules pinpointed computationally. Four of the 10 were found to be potent inhibitors that target hairpin 91 in the ribosomal PTC of M. tuberculosis and, as a result, stop translation.

2.
J Biol Chem ; 295(28): 9409-9420, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32404367

RESUMO

Microbial pathogens often target the host mitogen-activated protein kinase (MAPK) network to suppress host immune responses. We previously identified a bacterial type III secretion system effector, termed NleD, a metalloprotease that inactivates MAPKs by specifically cleaving their activation loop. Here, we show that NleDs form a growing family of virulence factors harbored by human and plant pathogens as well as insect symbionts. These NleDs disable specifically Jun N-terminal kinases (JNKs) and p38s that are required for host immune response, whereas extracellular signal-regulated kinase (ERK), which is essential for host cell viability, remains intact. We investigated the mechanism that makes ERK resistant to NleD cleavage. Biochemical and structural analyses revealed that NleD exclusively targets activation loops with high conformational flexibility. Accordingly, NleD cleaved the flexible loops of JNK and p38 but not the rigid loop of ERK. Our findings elucidate a compelling mechanism of native substrate proteolysis that is promoted by entropy-driven specificity. We propose that such entropy-based selectivity is a general attribute of proteolytic enzymes.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Metaloproteases/metabolismo , Proteólise , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células HEK293 , Humanos
3.
J Bacteriol ; 196(15): 2798-806, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24837293

RESUMO

Enteropathogenic Escherichia coli (EPEC) is a major cause of food poisoning, leading to significant morbidity and mortality. EPEC virulence is dependent on a type III secretion system (T3SS), a molecular syringe employed by EPEC to inject effector proteins into host cells. The injected effector proteins subvert host cellular functions to the benefit of the infecting bacteria. The T3SS and related genes reside in several operons clustered in the locus of enterocyte effacement (LEE). We carried out simultaneous analysis of the expression dynamics of all the LEE promoters and the rate of maturation of the T3SS. The results showed that expression of the LEE1 operon is activated immediately upon shifting the culture to inducing conditions, while expression of other LEE promoters is activated only ∼70 min postinduction. Parallel analysis showed that the T3SS becomes functional around 100 min postinduction. The T3SS core proteins EscS, EscT, EscU, and EscR are predicted to be involved in the first step of T3SS assembly and are therefore included among the LEE1 genes. However, interfering with the temporal regulation of EscS, EscT, EscU, and EscR expression has only a marginal effect on the rate of the T3SS assembly. This study provides a comprehensive description of the transcription dynamics of all the LEE genes and correlates it to that of T3SS biogenesis.


Assuntos
Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas/genética , Escherichia coli Enteropatogênica/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Óperon/genética , Fosfoproteínas/genética , Proteínas Recombinantes de Fusão , Deleção de Sequência , Fatores de Tempo
4.
Cold Spring Harb Perspect Med ; 3(3): a009977, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23457294

RESUMO

Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) belong to a group of bacteria known as attaching and effacing (A/E) pathogens that cause disease by adhering to the lumenal surfaces of their host's intestinal epithelium. EPEC and EHEC are major causes of infectious diarrhea that result in significant childhood morbidity and mortality worldwide. Recent advances in in vitro and in vivo modeling of these pathogens have contributed to our knowledge of how EPEC and EHEC attach to host cells and subvert host-cell signaling pathways to promote infection and cause disease. A more detailed understanding of how these pathogenic microbes infect their hosts and how the host responds to infection could ultimately lead to new therapeutic strategies to help control these significant enteric pathogens.


Assuntos
Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/microbiologia , Modelos Biológicos , Animais , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Gastroenterite/microbiologia , Humanos
5.
EMBO J ; 30(1): 221-31, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21113130

RESUMO

Two major arms of the inflammatory response are the NF-κB and c-Jun N-terminal kinase (JNK) pathways. Here, we show that enteropathogenic Escherichia coli (EPEC) employs the type III secretion system to target these two signalling arms by injecting host cells with two effector proteins, NleC and NleD. We provide evidence that NleC and NleD are Zn-dependent endopeptidases that specifically clip and inactivate RelA (p65) and JNK, respectively, thus blocking NF-κB and AP-1 activation. We show that NleC and NleD co-operate and complement other EPEC effectors in accomplishing maximal inhibition of IL-8 secretion. This is a remarkable example of a pathogen using multiple effectors to manipulate systematically the host inflammatory response signalling network.


Assuntos
Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/imunologia , Proteínas de Escherichia coli/imunologia , Interações Hospedeiro-Patógeno , Proteínas Quinases JNK Ativadas por Mitógeno/imunologia , NF-kappa B/imunologia , Apoptose , Escherichia coli Enteropatogênica/imunologia , Proteínas de Escherichia coli/genética , Expressão Gênica , Células HeLa , Humanos , Interleucina-8/genética , Interleucina-8/imunologia , Proteína Quinase 9 Ativada por Mitógeno/imunologia , Fator de Transcrição RelA/imunologia , Transcrição Gênica , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...